

5080A/MEG Megohm Option

Руководство пользователя

ОГРАНИЧЕННАЯ ГАРАНТИЯ И ОГРАНИЧЕНИЕ ОТВЕТСТВЕННОСТИ

нормальном использовании и обслуживании. Срок гарантии один год, начиная с даты поставки. На запчасти, ремонт оборудования и услуги предоставляется гарантия 90 дней. Эта гарантия действует только для первоначального покупателя или конечного пользователя, являющегося клиентом авторизованного реселлера Fluke, и не распространяется на предохранители, одноразовые батареи и на любые продукты, которые, по мнению Fluke, неправильно или небрежно использовались, были изменены, загрязнены или повреждены вследствие несчастного случая или ненормальных условий работы или обработки. Fluke гарантирует, что программное обеспечение будет работать в соответствии с его функциональными характеристиками в течение 90 дней, и что оно правильно записано на исправных носителях. Fluke не гарантирует, что программное обеспечение будет работать безошибочно и без остановки.

Авторизованные реселлеры Fluke расширят действие этой гарантии на новые и неиспользованные продукты только для конечных пользователей, но они не уполномочены расширять условия гарантии или вводить новые гарантийные обязательства от имени Fluke. Гарантийная поддержка предоставляется, только если продукт приобретен на авторизованной торговой точке Fluke, или покупатель заплатил соответствующую международную цену. Fluke оставляет за собой право выставить покупателю счет за расходы на ввоз запасных/сменных частей, когда продукт, приобретенный в одной стране, передается в ремонт в другой стране.

Гарантийные обязательства Fluke ограничены по усмотрению Fluke выплатой покупной цены, бесплатным ремонтом или заменой неисправного продукта, который возвращается в авторизованный сервисный центр Fluke в течение гарантийного периода.

Для получения гарантийного сервисного обслуживания обратитесь в ближайший авторизованный сервисный центр Fluke за информацией о праве на возврат, затем отправьте продукт в этот сервисный центр с описанием проблемы, оплатив почтовые расходы и страховку (ФОБ пункт назначения). Fluke не несет ответственности за повреждения при перевозке. После осуществления гарантийного ремонта продукт будет возвращен покупателю с оплаченной перевозкой (ФОБ пункт назначения). Если Fluke определяет, что неисправность вызвана небрежностью, неправильным использованием, загрязнением, изменением, несчастным случаем или ненормальными условиями работы и обработки, включая электрическое перенапряжение из-за несоблюдения указанных допустимых значений, или обычным износом механических компонентов, Fluke определит стоимость ремонта и начнет работу после получения разрешения. После ремонта продукт будет возвращен покупателю с оплаченной перевозкой, и покупателю будет выставлен счет за ремонт и транспортные расходы при возврате (ФОБ пункт отгрузки).

ЭТА ГАРАНТИЯ ЯВЛЯЕТСЯ ЕДИНСТВЕННОЙ И ИСКЛЮЧИТЕЛЬНОЙ И ЗАМЕНЯЕТ ВСЕ ОСТАЛЬНЫЕ ГАРАНТИИ, ПРЯМЫЕ ИЛИ СВЯЗАННЫЕ, ВКЛЮЧАЯ, ПОМИМО ПРОЧЕГО, СВЯЗАННЫЕ ГАРАНТИИ ГОДНОСТИ ДЛЯ ПРОДАЖИ ИЛИ ГОДНОСТИ ДЛЯ ОПРЕДЕЛЕННОЙ ЦЕЛИ. FLUKE НЕ НЕСЕТ ОТВЕТСТВЕННОСТИ ЗА СПЕЦИАЛЬНЫЕ, СЛУЧАЙНЫЕ ИЛИ КОСВЕННЫЕ ПОВРЕЖДЕНИЯ ИЛИ УЩЕРБ, ВКЛЮЧАЯ ПОТЕРЮ ДАННЫХ, ЯВЛЯЮЩИЕСЯ РЕЗУЛЬТАТОМ КАКИХ-ЛИБО ДЕЙСТВИЙ ИЛИ МЕТОДОВ.

Поскольку некоторые страны не допускают ограничения срока связанной гарантии или исключения и ограничения случайных или косвенных повреждений, ограничения этой гарантии могут относиться не ко всем покупателям. Если какое-либо положение этой гарантии признано судом или другим директивным органом надлежащей юрисдикции недействительным или не имеющим законной силы, такое признание не повлияет на действительность или законную силу других положений.

Fluke Corporation P.O. Box 9090 Everett, WA 98206-9090 U.S.A. Fluke Europe B.V. P.O. Box 1186 5602 BD Eindhoven The Netherlands

Содержание

Название Стран	іица
Введение	
Общие технические характеристики	
Подробные технические характеристики	
Источник низкого сопротивления	
Источник высокого сопротивления	
18,24 ГΩ Вывод одного значения	
Режим замыкания для мегомметров	
Как подготовить калибратор к работе	
Как калибровать приборы	
Как настроить выход источника высокого сопротивления 4	
Как настроить выход режима короткого замыкания 5	
Как настроить значение единого выхода	
Как настроить выход источника высокого сопротивления с	
умножителем	
Как определить значения R1 и R2 умножителя 6	
Как ввести переменные умножителя в калибратор	
Как настроить высокоомный выход	
Как настроить выход источника низкого сопротивления	
Применения	
Как калибровать приборы для контроля целостности цепей 9	
Как калибровать тестеры изоляции	0
Как калибровать тестеры изоляции с умножителем частоты на	•
нелинейном сопротивлении	3
Дистанционные команды и запросы	
Проверочные испытания МЕGOHM	_

5080A/MEG

Руководство пользователя

Список таблиц

Габли	ца Название	Стран	ица
1.	Перекрывающиеся и связанные команды		16
2.	Точки верификации LVR опции МОм		17
3.	Точки верификации короткого замыкания опции МОм		
4.	Точки верификации HVR опции МОм		
5.	Точки верификации S18G опции МОм		

5080A/MEG

Руководство пользователя

Список рисунков

Рисунк	е Название	Стран	ица
1.	Упрощенная схема источника высокого сопротивления		5
2.	Подключения умножителя к калибратору		8
3.	Подключения калибровки сопротивления испытываемого		
	устройства		10
4.	Калибровка сопротивления изоляции тестера изоляции		11
5.	Калибровка сопротивления изоляции ручного тестера изоляц	ции	11
6.	Калибровка сопротивления изоляции переносного тестера		12
7.	Калибровка сопротивления изоляции анализатора		
	электробезопасности		12
8.	Калибровка мегомметра		13
9.	Подключения к настольному тестеру с адаптером умножител	Я	
	сопротивления		14
10.	Подключения к 1550В с адаптером умножителя сопротивлен	ия	15

5080A/MEG

Руководство пользователя

Введение

Опция калибровки МОм (высокоомная опция) предоставляет функции поддержки некоторых тестеров электробезопасности, таких как мегомметры/тестеры изоляции. Примеры таких тестеров:

- Мегомметры/тестеры изоляции
- Тестеры сопротивления корпуса
- Тестеры электрического контура
- Тестеры устройств
- Тестеры электропроводки
- Измерители сопротивления заземления

Если данная опция МОм имеется в калибраторе 5080A, на клеммах опции МОм могут измеряться значения высокого и низкого сопротивления, а также значения низкого сопротивления для высокой мощности.

Общие технические характеристики

Все технические характеристики будут достоверными после прогрева в течение 30 минут или в течение удвоенного времени после последнего прогрева, то не более 30 минут. Например, если Калибратор 5080A выключался на 5 минут, то время прогрева составляет 10 минут.

В технические характеристики входит стабильность, температурный коэффициент, линейность, нестабильность напряжения по сети и по нагрузке и прослеживаемость внешних стандартов, используемых для калибровки. Необходимость каких-либо дополнений к определению общей погрешности для указанных диапазонов температуры отсутствует.

Достоверность погрешности	.99%
Время прогрева	. Удвоенное время после последнего прогрева, но не более 30 минут.
Температура	
Рабочая	.от 0°С до 50°С
Калибровки (tcal)	.от 15°С до 35°С
Хранения	.от -20°С до +70°С
Температурный коэффициент	. Температурный коэффициент для температур вне интервала \pm 5°C составляет 10% от указанного в технических характеристиках значения на каждый °C для температур в интервале от 0°C до 35°C. Свыше 35°C, температурный коэффициент составляет 20% от указанной в технических характеристиках величины на каждый °C.
Относительная влажность	
Рабочая	. < 80% до 30°C, < 70% до 40°C, < 40% до 50°C.
Хранения	. < 95%, без конденсации
Высота над уровнем моря	
Рабочая	.до 2000 м (6500 футов) максимум
Нерабочая	.до 12200 м (40000 футов) максимум

Подробные технические характеристики

Источник низкого сопротивления

Диапазон от $1~\Omega$ до $5,9~\kappa\Omega$

Измерение испытательного напряжения

Разрешение......0,1 В

Погрешность $\pm (1,2\%$ входной мощности $\pm 0,2$ В)

Погрешность измерения испытательного

тока±((1,2% + RS%) входа ±0,2 V/R) А, где RS - погрешность

сопротивления, а R - сопротивление

	Максимальный ток при испытании в	Максимальное отклонение от	Погрешность действ tcal ± 5°C, ± (%	
Номинальное значение	режиме непрерывной нагрузки ^[1]	номинального значения (±±(% от значения)	90 дней	1 год
1 Ω	700 мА	20%	1,10%	1,10%
1,8 Ω	610 MA	10%	0,78%	0,78%
3,7 Ω	550 MA	7%	0,57%	0,57%
5,9 Ω	510 MA	7%	0,49%	0,49%
10Ω	440 MA	5%	0,45%	0,45%
18 Ω	330 мА	5%	0,42%	0,42%
37 Ω	230 мА	5%	0,41%	0,41%
59 Ω	170 mA	5%	0,48%	0,48%
100 Ω	140 mA	5%	0,45%	0,45%
180 Ω	105 MA	5%	0,42%	0,42%
370 Ω	73 мА	5%	0,41%	0,41%
590 Ω	53 mA	5%	0,34%	0,34%
1 κΩ	44 mA	5%	0,30%	0,30%
1,8 κΩ	30 мА	5%	0,22%	0,22%
3,7 κΩ	15 MA	5%	0,14%	0,14%
5,9 κΩ	9 мА	5%	0,10%	0,10%

^[1] При превышении ограничений максимального тока Калибратор отключит выходные клеммы и на дисплее отобразится сообщение об ошибке.

Источник высокого сопротивления

Диапазонот 10 кОм Ω до 10,05 ГОм Ω

Измерение испытательного напряжения

Диапазон.....от 0 до 1575 В

Разрешение......1 В

Погрешность $\pm (3,0\%$ входной мощности ± 5 В)

Погрешность измерения испытательного

тока±((3,0% + RS%) входа ±5 V/R) А, где RS - погрешность

сопротивления, а R - сопротивление

Погрешность и максимальные значения

Диапазон	Разрешение	Максимальное [1]	Погрешность (tcal \pm 5°C, \pm от выходной мощности)	
		напряжение ^[1]	90 дней	1 год
От 10,00 до 19,99 кОмΩ	10Ω	140 B	0,20%	0,20%
От 20,00 до 39,99 кОмΩ	10Ω	200 B	0,20%	0,20%
От 40,00 до 99,99 кОмΩ	10Ω	400 B	0,20%	0,20%
От 100,0 до 499,9 кОмΩ	100 Ω	800 B	0,20%	0,20%
От 500,0 до 999,9 кОмΩ	100 Ω	1100 B	0,20%	0,20%
От 1,000 до 9,999 МОмΩ	1 κΩ	1575 B	0,30%	0,30%
От 10,00 до 99,99 МОмΩ	10 κΟΜΩ	1575 B	0,50%	0,50%
От 100,0 до 999,9 МОмΩ	100 κΟΜΩ	1575 B	0,50%	0,50%
От 1,000 до 10,050 ГОмΩ	1 ΜΟΜΩ	1575 B	1,00%	1,00%

При превышении ограничений максимального тока выходные клеммы калибратора отключатся и на дисплее отобразится сообщение об ошибке.

18,24 Г Ω Вывод одного значения

Диапазон 18,24 Г Ω единый выход

Измерение испытательного напряжения

Диапазон..... от 0 до 1575 В

Разрешение......1 В

Погрешность $\pm (3,0\%$ входящей мощности ± 5 В)

Погрешность измерения испытательного

тока ±(3,1% входа ±1 нА)

Погрешность и максимальные значения

Номинальное значение	Максимальное напряжение ^[1]	Максимальное отклонение от номинального значения	Погрешность, 1 год, tcal ±5°C, ± (% от выходной мощности)		
18,24 ΓΟΜΩ 1575 Β		±5%	3,0%		
[1] При превышении ограничений максимального тока Калибратор отключит выходные клеммы и на дисплее отобразится					

^[1] При превышении ограничений максимального тока Калибратор отключит выходные клеммы и на дисплее отобразится сообщение об ошибке.

Режим замыкания для мегомметров

Номинальное сопротивление..... < 100 Ω

Измерение испытательного тока

Диапазон......100 мА пост. тока пиковый

Разрешение......0,1 мА

Погрешность измерения испытательного

напряжения ±(1,2% входа ±0,2 В)

Примечание

При превышении ограничений максимального тока калибратор отключит выходные клеммы и на дисплее отобразится сообщение об ошибке.

Как подготовить калибратор к работе

Время разогрева калибратора приведено в *Руководстве по эксплуатации* 50804.

Как калибровать приборы

Опция МОм имеет следующие режимы:

- Источник высокого сопротивления (HVR)
- Режим замыкания (для мегомметров)
- Источник низкого сопротивления (LVR)
- 18,24 ΓΩ (одно значение)
- Источник высокого сопротивления х 1000 (MULTI)

Сопротивление для всех пяти функций распределяется по MEGOHM HI и LO клеммам калибратора. Клемма LO может быть незаземленной или заземленной. Будучи заземленной, клемма LO подключается к заземлению через заземление в модуле входа пер. тока через внутреннее реле. Подробности по этой функции смотрите в разделе "Когда использовать ЗАЗЕМЛЕНИЕ" в Руководстве по эксплуатации 5080A. Будучи незаземленной, клемма LO подключается к заземлению через элементы защиты. Напряжение между клеммой LO и заземлением не должно превышать 20 В. Напряжение выше 20 В приведет к ошибке в измерениях из-за утечки тока.

Как настроить выход источника высокого сопротивления

Чтобы получить высокое сопротивление с опцией МОм:

- 1. Если он еще не активен, нажмите то
- 2. Нажимайте функциональную клавишу, обозначенную **MODE**, пока над самой правой функциональной клавишей калибратора не появится надпись **hvr**.
- 3. Чтобы установить сопротивление на клеммах MEGOHM, введите значение с помощью клавиатуры или ручки.

Примечание

Для улучшения стабильности калибровки иногда необходим 3-проводный режим. Это особенно верно для сопротивлений свыше 100 МОмΩ. Третья клемма обычно подключается к защитной или заземляющей клемме на испытываемом устройстве. Если испытываемое устройство оснащено клеммой заземления (GND), ее нужно подключить к клемме AUX EARTH GROUND на задней панели калибратора.

- 4. Подсоедините клеммы испытываемого устройства к клеммам MEGOHM калибратора.
- 5. После подтверждения правильности всех настроек и подключения нажмите орво, чтобы подключить испытываемое устройство к выбранному сопротивлению. Упрощенную схему для этого подключения см. на рис. 1.

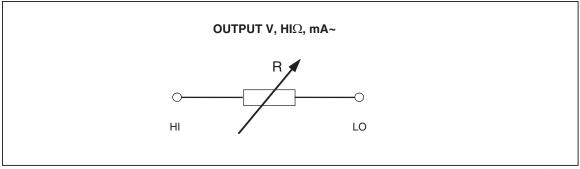
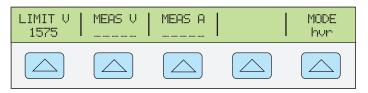



Рис. 1. Упрощенная схема источника высокого сопротивления

ehq011.eps

Будучи подключенным к испытываемому устройству, калибратор следит за напряжением на сопротивлении (MEAS V), а также за проходящим через него током (MEAS A). Если напряжение через сопротивление превышает допустимые пределы (LIMIT V), калибратор отключает выходные клеммы и отображает сообщение об ошибке.

gjk001.eps

Если калибратор находится в режиме эксплуатации, сопротивление на клеммах MEGOHM можно изменить с помощью клавиатуры или ручки.


Как настроить выход режима короткого замыкания

В режиме короткого замыкания клеммы MEGOHM калибратора замыкаются, чтобы проверить максимальный испытательный ток испытываемого устройства.

Чтобы настроить опцию МОм на режим замыкания:

- Если опция еще не активна, нажмите нево.
- 2. Нажимайте функциональную клавишу, обозначенную **MODE**, пока над самой правой функциональной клавишей калибратора не появится надпись **short**.
- Подсоедините клеммы испытываемого устройства к клеммам калибратора.
- 4. Нажмите орг, чтобы подключить испытываемое устройство к замыканию.

Будучи подключенным к испытываемому устройству, калибратор следит за напряжением, появляющимся при замыкании клемм (MEAS V), а также за проходящим через них током (MEAS A). Если ток через замкнутые клеммы превышает допустимые пределы (LIMIT A), калибратор отключает выходные клеммы и отображает сообщение об ошибке.

aik002.ens

5. Нажмите [STBY], чтобы переключить опцию МОм в режим ожидания и отключить испытываемое устройство от замкнутых клемм. Когда калибратор переходит в режим ожидания, значения MEAS V и MEAS A сменяются на "-----".

Как настроить значение единого выхода

В режиме единого выходного значения к клеммам MEGOHM подключается сопротивление 18,24 $\Gamma \text{Om}\Omega$.

Чтобы настроить опцию Megohm Option на единое выходное значение:

- 2. Нажимайте функциональную клавишу, обозначенную **MODE**, пока над самой правой функциональной клавишей калибратора не появится надпись **18G**.
- Подсоедините клеммы испытываемого устройства к клеммам калибратора.
- 4. Нажмите <u>ор</u>я, чтобы подключить испытываемое устройство к сопротивлению.

Будучи подключенным к испытываемому устройству, калибратор следит за напряжением, появляющимся на сопротивлении (MEAS V), а также за проходящим через него током (MEAS A). Если напряжение через сопротивление превышает допустимые пределы (LIMIT V), калибратор отключает выходные клеммы и отображает сообщение об ошибке.

aik003.eps

5. Нажмите [STBY], чтобы переключить опцию МОм в режим ожидания и отключить испытываемое устройство от сопротивления. Когда калибратор переходит в режим ожидания, значения MEAS V и MEAS A сменяются на "-----".

Как настроить выход источника высокого сопротивления с умножителем

Умножитель высокого напряжения Fluke 5320A расширяет диапазон высокого сопротивления калибратора до 10 ТОм Ω . Прежде чем использовать умножитель сопротивления, для подсчета правильного сопротивления на входных клеммах умножителя в калибратор необходимо ввести значения характерного сопротивления умножителя.

Как определить значения R1 и R2 умножителя

Чтобы определить верные значения R1 и R2 для умножителя:

- 1. С помощью эталонного мультиметра Fluke 8508A или эквивалентного настройте измерительное устройство на диапазон 2 ГОмΩ.
- 2. Подсоедините измерительный вход 2W HI к гнезду HI (HI Ω умножителя) на задней стороне высоковольтного адаптера/умножителя сопротивления.
- 3. Подсоедините измерительный вход 2W LO к гнезду HI на передней стороне высоковольтного адаптера/умножителя сопротивления.

- 4. Сохраните измерение в измерительном приборе как R1.
- 5. Настройте измерительный прибор на диапазон 2 $MOm\Omega$.
- 6. Переключите провод, подключенный ко входу 2W LO измерительного прибора, с входного гнезда HI на гнездо COM/GUARD на передней части высоковольтного адаптера/умножителя сопротивления.
- 7. Сохраните измерение в измерительном приборе как R2.

Как ввести переменные умножителя в калибратор

Примечание

Умножитель сопротивления может использоваться только с тестерами изоляции, которые имеют третью клемму, обычно называемую защитной клеммой.

- 1. Если он еще не активен, нажмите Тедо
- 2. Нажимайте функциональную клавишу, обозначенную **MODE**, пока над самой правой функциональной клавишей калибратора не появится надпись **multi**.

Примечание

Минимальное значение сопротивления, доступного в режиме умножителя, равняется 350 $MOm\Omega$.

Имеется две константы калибровки умножителя, используемые калибратором для подсчета выходного сопротивления на умножителе сопротивления: R1 и R2. Текущие значения R1 и R2 демонстрируются в окне режима умножителя.

gjk004.eps

Если значения, демонстрируемые под R1 и R2, неправильные:

- 1. Нажмите ветир.
- 2. Затем нажмите функциональную кнопку, обозначенную **INSTMT SETUP**.
- 3. Затем нажмите функциональную кнопку, обозначенную **OUTPUT SETUP**.
- 4. Затем нажмите функциональную кнопку, обозначенную **SET MULTI**.
- 5. В зависимости от установленной переменной нажмите программную кнопку, обозначенную **R1**, **R2** или **Rs**.
- 6. Введите значение переменной через клавиатуру калибратора и нажмите

Повторите шаги 5 и 6 для каждой переменной, которую вы хотите изменить.

Примечание

Rs настраивает входное сопротивление чувствительной клеммы испытываемого устройства. Для оптимальной производительности фабричная установка для Rs по умолчанию равняется 0 Ом.

Чтобы вернуться в меню multi, нажимайте $\frac{\text{PREV}}{\text{MENU}}$ несколько раз, пока не отобразится дисплей.

Сохраните или отмените изменения после изменения параметров настройки.

Как настроить высокоомный выход

Чтобы настроить опцию МОм на режим умножителя:

- 2. Нажимайте функциональную клавишу, обозначенную **MODE**, пока над самой правой функциональной клавишей калибратора не появится надпись **multi**.
- 3. Подсоедините умножитель к калибратору как показано на рисунке 2.

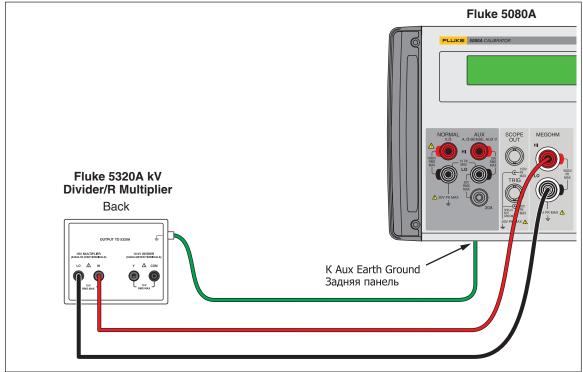


Рис. 2. Подключения умножителя к калибратору

gmk015.eps

- 4. Подсоедините клеммы испытываемого устройства к входным клеммам умножителя.
- 5. Введите значение выхода высокого сопротивления с помощью клавиатуры калибратора или ручки, пока на дисплее не появится нужное значение.
- 6. Нажмите орг, чтобы подключить испытываемое устройство к сопротивлению.
 - Если калибратор находится в режиме эксплуатации, сопротивление на клеммах умножителя можно изменить с помощью клавиатуры или ручки.
- 7. Нажмите [STBY], чтобы переключить опцию МОм в режим ожидания и отключить испытываемое устройство от сопротивления.

Как настроить выход источника низкого сопротивления

В режиме выхода источника низкого сопротивления одно из множества значений дискретных сопротивлений подключается к клеммам МЕGOHM. Смотрите список выбираемых сопротивлений в таблице неточности и максимальных значений источника низкого сопротивления в разделе технических характеристик.

Чтобы настроить опцию МОм на режим источника низкого сопротивления:

- 1. Если он еще не активен, нажмите 📠 .
- 2. Нажимайте функциональную клавишу, обозначенную **MODE**, пока над

- самой правой функциональной клавишей калибратора не появится надпись **lvr**.
- 3. Подсоедините клеммы испытываемого устройства к MEGOHM клеммам калибратора.
- 4. Введите одно из значений дискретного сопротивления с помощью клавиатуры калибратора.

Примечание

Чтобы просмотреть список действительных значений сопротивления, нажмите функциональную кнопку, обозначенную **LIST VALUE**. Определив значение сопротивления, нажмите RENU , чтобы вернуться к меню **Ivr**, и наберите значение.

5. Нажмите орг, чтобы подключить испытываемое устройство к сопротивлению.

Будучи подключенным к испытываемому устройству, калибратор следит за напряжением, появляющимся на сопротивлении (MEAS V), а также за проходящим через него током (MEAS A). Если ток через сопротивление превышает допустимые пределы (LIMIT A), калибратор отключает выходные клеммы и отображает сообщение об ошибке.

gjk006.eps

Примечание

Допустимые значения сопротивления — это дискретные значения, а потому ручка для изменения значения сопротивления на клеммах MEGOHM использоваться не может.

6. Нажмите [STBY], чтобы переключить опцию МОм в режим ожидания и отключить испытываемое устройство от сопротивления. Когда калибратор переходит в режим ожидания, значения MEAS V и MEAS A сменяются на "-----".

Примечание

Чтобы показать ошибку испытываемого устройства с помощью ручки, обратитесь к разделу "Редактирование и настройки вывода ошибок" в главе 4 Руководства по эксплуатации 5080A.

Применения

Данный раздел демонстрирует несколько типичных применений опции калибровки Megohm Calibration Option для лучшего понимания того, как пользоваться опцией Megohm Option.

Как калибровать приборы для контроля целостности цепей

Непрерывность — это функция с низким значением Ом, обычно имеющаяся в большинстве электрических испытательных приборов. Тестеры изоляции и тестеры проводки — два инструмента, которые используют функцию низкого значения Ом.

Чтобы провести 2-проводую калибровку сопротивления:

- 1. Нажмите 📠.
- 2. Нажимайте функциональную клавишу, обозначенную **MODE**, пока над самой правой функциональной клавишей калибратора не появится надпись **lvr**.
- 3. Подсоедините испытываемое устройство к калибратору как показано на рисунке 3.

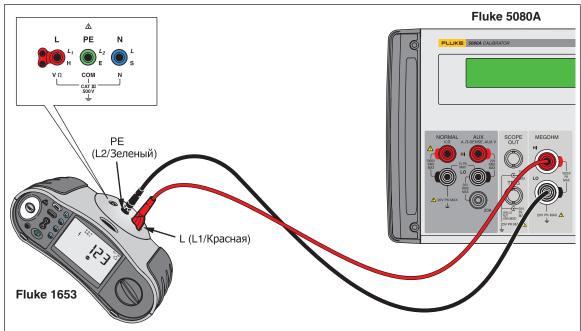


Рис. 3. Подключения калибровки сопротивления испытываемого устройства

amk008.eps

- 4. Введите одно из значений дискретного сопротивления с помощью клавиатуры калибратора.
- Нажмите о₱п.
- 6. Сравните показания измерений на испытываемом устройстве со стандартным значением на дисплее калибратора.
- 7. Нажмите [STBY], чтобы переключить опцию МОм в режим ожидания и отключить испытываемое устройство от сопротивления.

Как калибровать тестеры изоляции

Используйте функцию источника высокого сопротивления, чтобы калибровать функцию сопротивления изоляции на тестерах изоляции/мегомметрах, тестерах проводки, тестерах оборудования и анализаторах электробезопасности. Рисунки с 4 по 8 показывают как подключать калибратор к пяти различным типа испытываемых устройств для калибровки сопротивления изоляции.

Чтобы провести калибровку сопротивления изоляции:

- 2. Нажимайте функциональную клавишу, обозначенную **MODE**, пока над самой правой функциональной клавишей калибратора не появится надпись **hvr**.
- 3. В зависимости от типа испытываемого устройства подсоедините

испытываемое устройство к калибратору как показано на рисунках 4 через 8.

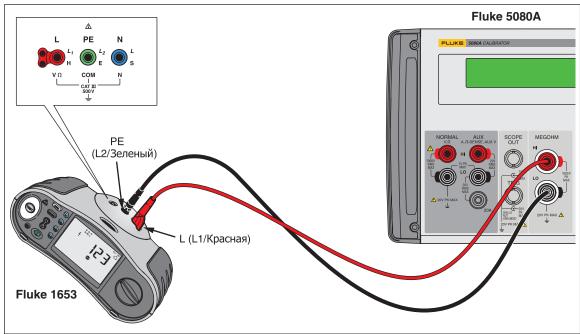


Рис. 4. Калибровка сопротивления изоляции тестера изоляции

gmk008.eps

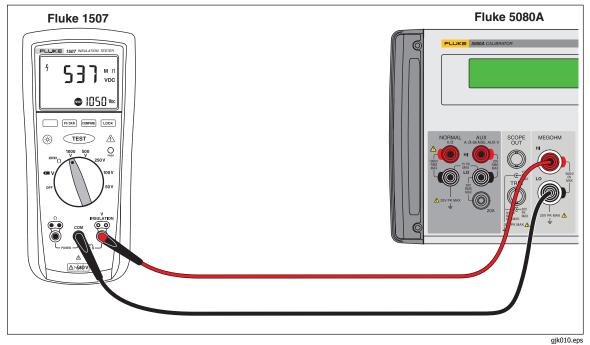


Рис. 5. Калибровка сопротивления изоляции ручного тестера изоляции

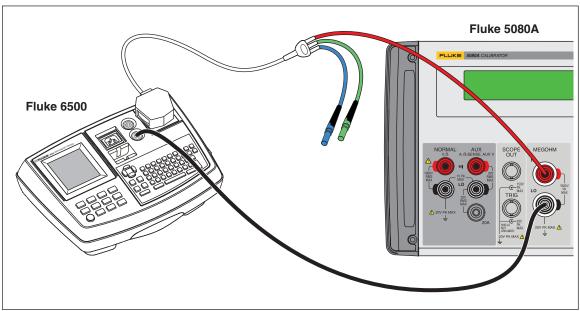


Рис. 6. Калибровка сопротивления изоляции переносного тестера

gjk011.eps

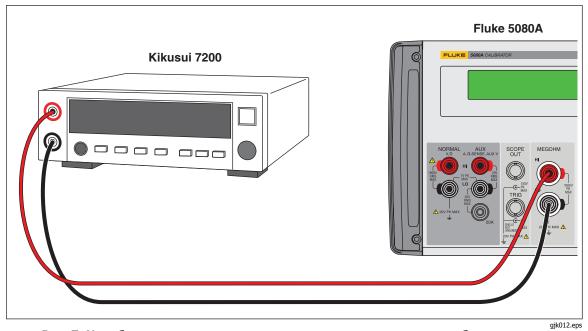
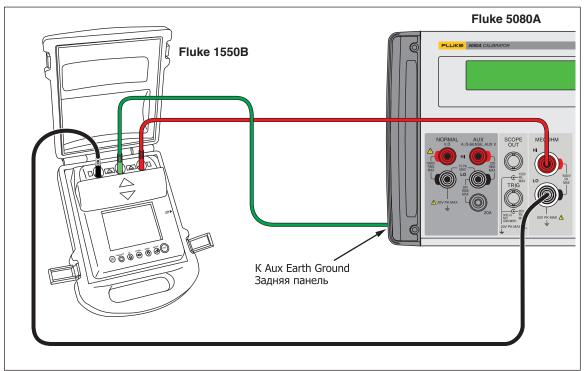



Рис. 7. Калибровка сопротивления изоляции анализатора электробезопасности

Рис. 8. Калибровка мегомметра

gmk016.eps

Примечание

Чтобы избежать возникновения паразитного контура замыкания на землю и шумов, используйте в системе только одно соединение между землей и клеммой LO. Убедитесь, сигнализатор EARTH выключен, когда клемма защиты или заземления испытываемого устройства подключается к клемме AUX EARTH GROUND на задней панели калибратора.

- 4. Чтобы установить сопротивление на клеммах MEGOHM, введите значение с помощью клавиатуры или вращения поворотной кнопки.
- 5. Настройте диагностическое напряжение на испытываемом устройстве.
- Нажмите о₱п.
- 7. Чтобы активировать измерение, нажмите кнопку запуска или тестирования испытываемого устройства.

Стандартный резистор теперь подключен к выходным клеммам. Испытательное напряжение и ток, генерируемый испытываемым устройством, измеряются калибратором и демонстрируются на дисплее. Сравните показания измерений на испытываемом устройстве со стандартным значением, демонстрируемым на дисплее калибратора.

- 8. Прекратите тестирование, отпустив соответствующую кнопку тестирования испытываемого устройства.
- 9. Нажмите <a>ѕтвт, чтобы отключить испытываемое устройство от калибратора.

Как калибровать тестеры изоляции с умножителем частоты на нелинейном сопротивлении

Примечание

Для некоторых мегомметров. когда вы используете адаптер умножителя сопротивления, клемма НІ на калибраторе должна быть подключена к клемме LO на множителе. Клемма LO на калибраторе должна быть подключена к клемме НІ на умножителе. Когда вы меняете местами провода НІ и LO при использовании функции сопротивления с высоким значением Ом, должно быть включено заземление.

Умножитель сопротивления может использоваться только с мегомметрами, которые имеют третью клемму, обычно называемую защитной клеммой.

Примечание

Чтобы избежать возникновения паразитного контура замыкания на землю и шумов, используйте в системе только одно соединение между землей и клеммой LO. Убедитесь, что сигнализатор EARTH выключен, когда клемма защиты или заземления испытываемого устройства подключается к клемме AUX EARTH GROUND на задней панели калибратора.

Чтобы произвести калибровку сопротивления изоляции с умножителем частоты на нелинейном сопротивлении:

- 2. Нажимайте функциональную клавишу, обозначенную **MODE**, пока над самой правой функциональной клавишей калибратора не появится надпись **multi**.
- 3. В зависимости от типа испытываемого устройства подсоедините испытываемое устройство к калибратору как показано на рисунках 0-9 и 0-10.

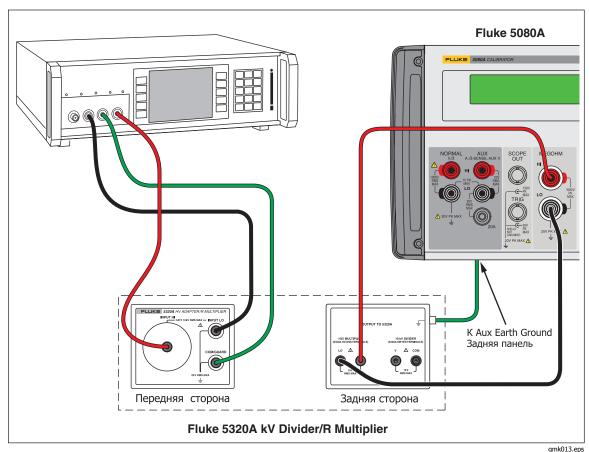
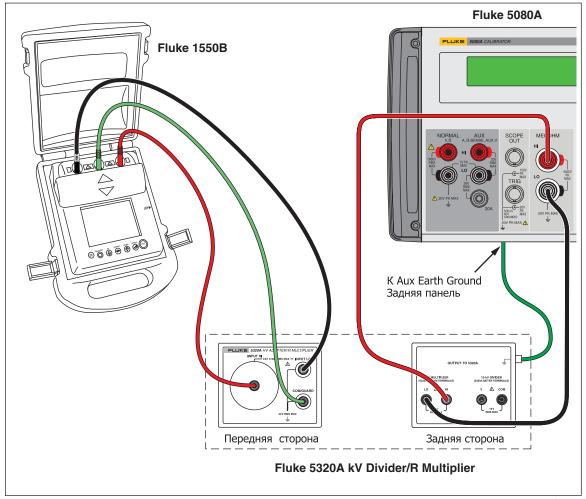



Рис. 9. Подключения к настольному тестеру с адаптером умножителя сопротивления

gmk014.eps

Рис. 10. Подключения к 1550В с адаптером умножителя сопротивления

- 4. Введите выходное значение высокого сопротивления с помощью клавиатуры калибратора или поворота ручки, пока это значение на высветится на дисплее.
- Настройте диагностическое напряжение на испытываемом устройстве.
- 6. Нажмите <u>ор</u>я, чтобы подключить испытываемое устройство к сопротивлению.
- 7. Чтобы активировать измерение, нажмите кнопку запуска или тестирования испытываемого устройства. Стандартный резистор теперь подключен к выходным клеммам. Сравните показания измерений на испытываемом устройстве со стандартным значением, демонстрируемым на дисплее калибратора.
- 8. Прекратите тестирование, отпустив соответствующую кнопку тестирования испытываемого устройства.
- 9. Нажмите [\$TBY], чтобы отключить испытываемое устройство от калибратора.

Дистанционные команды и запросы

Данный раздел описывает команды и запросы, которые используются в опции МОм. Каждая команда входит в одну или более категорий: последовательные, перекрывающиеся и связанные.

Последовательные команды – команды, исполняемые немедленно после их появления в потоке данных, называются последовательными командами. Больше информации смотрите в разделе "Последовательные команды" в главе 5 Руководства по эксплуатации 5080A.

Перекрывающиеся команды — команды, требующие дополнительного времени для выполнения, называются перекрывающимися командами потому, что они перекрываются следующей командой до того, как заканчивается их выполнение. Чтобы не допустить прерывания перекрывающейся команды во время выполнения, используйте команды *OPC, *OPC? и *WAI для определения того, завершилось ли выполнение команды. См. таблицу 6-8 для всех команд, относящихся к классу перекрывающихся. Больше информации смотрите в разделе "Перекрывающиеся команды" в главе 5 Руководства по эксплуатации 5080А.

Связанные команды — Так называются связанные между собой команды (например: CUR_POST и OUT), так как они «связаны» в последовательности составной команды. Следует проявлять осторожность, чтобы действие одной команды не отменяло действие второй команды, приводя, таким образом, к отказу. См. таблицу 6-8 для всех команд, относящихся к классу связанных. Больше информации смотрите в разделе "Связанные команды" в главе 5 Руководства по эксплуатации 5080A.

Таблица 1. Перекрывающиеся и связанные команды

Команда	Перекрывающаяся	Связанная
MEGO(?)	Да	Нет
MGSETUP(?)	Нет	Нет
MGMEAS?	Нет	Нет

MEGO(?) <значение >

Описание Программирование 5080А на использование опции МОм, если она установлена.

Параметры <значение> = OFF Выключает опцию МОм.

Программирование 0 В, 0 Гц выхода на

клеммах NORMAL.

HVR Устанавливает режим высоковольтного

сопротивления.

SHORT Устанавливает режим короткого

замыкания.

S18G Устанавливает режим единого выходного

значения.

MULTI Устанавливает режим умножителя.

LVR Устанавливает режим низковольтного

сопротивления.

Пример MEGO HVR Устанавливает опцию МОм в режиме

высоковольтного сопротивления.

Запрос MEGO? Возвращает режим опции МОм (OFF, HVR,

SHORT, S18G, MULTI или LVR).

MGSETUP(?) <значение >

Описание Настраивает параметры для умножителя в опции МОм.

Параметры <значение> = Значение R2, Значение R1, Значение Rs

Пример MGSETUP 300,0 КОНМ, 300,0 МОНМ, 0,0 МОНМ

Настраивает R2 на 300,0 к Ω , R1 на 300,0 M Ω , Rs на 0,0 Ω

Запрос MGSETUP? Возвращает запрограммированные параметры для

опции МОм.

Возвращает 3,000е + 05, 3,000е + 08, 0,000е + 00

MGMEAS?

Описание Возвращает измеренные значения опции МОм.

Запрос MGMEAS? Возвращает 1000, 0,100E-3 Это 1000 В

для MEAS V и 0,1 мА для MEAS A.

Проверочные испытания MEGOHM

Прежде чем Megohm Option покидает фабрику Fluke, приставка проходит проверку на соответствие спецификациям. Точки проверочных испытаний, представленные в таблицах с 2 по 5, должны использоваться в качестве руководства на случай необходимости повторной проверки. Встроенные коэффициенты для измерения погрешности отсутствуют.

Примечание

Проверка должна осуществляться квалифицированными специалистами по метрологии, которые имеют доступ к оборудованной в соответствии со стандартами лаборатории, чтобы тестировать калибровочное оборудование с таким уровнем точности.

Таблица 2. Точки верификации LVR опции МОм

Номинальное		Показан	ия прибора	Макс. Отклонение от
значение	Погрешность	Мин.	Макс.	действительного значения
1 Ω	0,2 Ω	800,00 MΩ	1,2 Ω	±0,011 Ω
1,8 Ω	0,18 Ω	1,62 Ω	1,98 Ω	±0,014 Ω
3,7 Ω	0,259 Ω	3,441 Ω	3,959 Ω	±0,021 Ω
5,9 Ω	0,413 Ω	5,487 Ω	6,313 Ω	±0,029 Ω
10Ω	0,5 Ω	9,5 Ω	10,50 Ω	±0,45 Ω
18 Ω	0,9 Ω	17,1 Ω	18,90 Ω	±0,075 Ω
37 Ω	1,85 Ω	35,15 Ω	38,85 Ω	±0,150 Ω
59 Ω	2,95 Ω	56,05 Ω	61,95 Ω	±0,28 Ω
100 Ω	5 Ω	95 Ω	105 Ω	±0,45 Ω
180 Ω	9 Ω	171 Ω	189 Ω	±0,75 Ω
370 Ω	18,5 Ω	351,5 Ω	388,5 Ω	±1,5 Ω
590 Ω	29,5 Ω	560,5 Ω	619,5 Ω	±2,0 Ω
1 κΩ	50Ω	950 Ω	1,05 κΩ	±3,0 Ω
1,8 κΩ	90Ω	1,71 κΩ	1,89 κΩ	±4,0 Ω
3,7 κΩ	185 Ω	3,515 κΩ	3,885 κΩ	±5,0 Ω
5,9 κΩ	295 Ω	5,605 κΩ	6,195 κΩ	±6,0 Ω

Таблица 3. Точки верификации короткого замыкания опции МОм

Номинальное значение	Показан	ия прибора
	Мин.	Макс.
59,00 Ω	0,00 Ω	100 Ω

Таблица 4. Точки верификации HVR опции МОм

Номинальное		Показани	я прибора
значение	Погрешность	Мин.	Макс.
10,00 κΩ	20,0 Ω	9,98 κΩ	10,02 κΩ
11,55 κΩ	23,1 Ω	11,5269 κΩ	11,5731 κΩ
21,00 κΩ	42,0 Ω	20,958 κΩ	21,042 κΩ
42,00 κΩ)	84,0 Ω	41,916 κΩ	42,084 κΩ
80,85 κΩ	161,7 Ω	80,6883 κΩ	81,0117 κΩ
100,0 κΩ	200,0 Ω	99,8000 κΩ	100,2000 κΩ
150,2 κΩ	300,4 Ω	149,8996 κΩ	150,5004 κΩ
288,2 κΩ	576,4 Ω	287,9236 κΩ	288,7764 κΩ
499,9 κΩ	999,8 Ω	498,9002 κΩ	500,8998 κΩ
535,5 κΩ	1,0710 Ω	534,4290 κΩ	536,5710 κΩ
999,9 κΩ	1,9998 Ω	997,9002 κΩ	1,0019 ΜΩ
1,000 ΜΩ	2,000 κΩ	998,0000 κΩ	1,0020 ΜΩ
1,029 ΜΩ	3,087 κΩ	1,0259 MΩ	1,0321 ΜΩ
1,920 ΜΩ	5,760 κΩ	1,9142 ΜΩ	1,9258 ΜΩ
3,660 MΩ	10,980 κΩ	3,6490 MΩ	3,6710 ΜΩ
6,980 MΩ	20,940 κΩ	6,9591 MΩ	7,0009 ΜΩ
9,999 ΜΩ	29,997 κΩ	9,969 ΜΩ	10,029 MΩ
10,00 ΓΩ	30,00 κΩ	9,970 ΜΩ	10,030 ΜΩ
10,24 ΓΩ	51,20 κΩ	10,1888 ΜΩ	10,2912 MΩ
20,98 ΓΩ	104,90 κΩ	20,8751 MΩ	21,0849 MΩ
39,19 ΓΩ	195,95 κΩ	38,9941 MΩ	39,3860 MΩ
76,55 ΓΩ	382,75 κΩ	76,1673 ΜΩ	76,9328 MΩ
99,99 ΓΩ	499,95 κΩ	99,4901 MΩ	100,4900 MΩ
100,0 ΓΩ	500,00 κΩ	99,500 MΩ	100,500 MΩ
138,6 ΓΩ	693,00 κΩ	137,907 ΜΩ	139,293 MΩ
148,9 ΓΩ	744,50 κΩ	148,1555 MΩ	149,6445 MΩ
289,6 ΓΩ	1,4480 ΜΩ	288,152 MΩ	291,048 MΩ
559,6 ΓΩ	2,7980 ΜΩ	556,802 MΩ	562,398 MΩ
999,9 ΓΩ	4,9995 MΩ	994,9005 MΩ	1,0049 ΓΩ
1,000 ΤΩ	5,0000 MΩ	995,0000 MΩ	1,0050 ΓΩ
1,060 ΤΩ	10,600 MΩ	1,0494 ΓΩ	1,0706 ΓΩ
2,000 ΤΩ	20,000 ΜΩ	1,9800 ΓΩ	2,0200 ΓΩ

Таблица 4. Точки верификации HVR опции МОм (прод.)

Номинальное	Погрешность -	Показан	ия прибора
значение		Мин.	Макс.
3,920 ΤΩ	39,200 MΩ	3,8808 ΓΩ	3,9592 ГΩ
5,000 ΤΩ	50,000 MΩ	4,9500 ΓΩ	5,0500 ΓΩ
5,370 ΤΩ	53,700 MΩ	5,3163 ΓΩ	5,4237 ΓΩ
7,000 ΤΩ	70,000 MΩ	6,9300 ΓΩ	7,0700 ΓΩ
7,210 ΤΩ	72,100 MΩ	7,1379 ΓΩ	7,2821 ΓΩ
10,000 ΤΩ	100,000 MΩ	9,9000 ΓΩ	10,1000 ΓΩ

Таблица 5. Точки верификации S18G опции МОм

Номинальное значение	Погрешность	Показания прибора	
		Мин.	Макс.
18,24 ΓΩ	547,2 MΩ	17,6928 ΓΩ	18,7872 ΓΩ

5080A/MEG

Руководство пользователя